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Significance

Long-term memories are 
dynamic, but the network 
patterns that enable this 
behavioral flexibility are not well 
understood. In the present study, 
we show that activity in the 
hippocampus and cortex is 
differentially coordinated based 
on the age, strength, and type of 
memory. Our findings may be 
useful in identifying markers of 
different ongoing memory 
processes and understanding 
mechanisms that lead to both 
impaired and overactive 
information retention.
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Reactivation of long-term memories enables experience-dependent strengthening, 
weakening, or updating of memory traces. Although coupling of hippocampal and 
cortical activity patterns facilitates initial memory consolidation, whether and how these 
patterns are involved in postreactivation memory processes are not known. Here, we 
monitored the hippocampal–cortical network as rats repetitively learned and retrieved 
spatial and nonspatial memories. We show that interactions between hippocampal sharp 
wave–ripples (SPW-R), cortical spindles (SPI), and cortical ripples (CXR) are jointly 
modulated in the absence of memory demand but independently recruited depending 
on the stage of memory and task type. Reconsolidation of memory after retrieval is 
associated with an increased and extended window of coupling between hippocampal 
SPW-Rs and CXRs compared to the initial consolidation. Hippocampal SPW-R and 
cortical spindle interactions are preferentially engaged during memory consolidation. 
These findings suggest that specific, time-limited patterns of oscillatory coupling can 
support the distinct memory processes required to flexibly manage long-term memories 
in a dynamic environment.

consolidation | hippocampus | learning | memory | ripples

Newly formed memories become more stable and durable through memory consolidation 
(1). Retrieval of a consolidated memory can reopen a window of lability, after which the 
memory can be strengthened, updated, or weakened depending on the nature of the 
retrieval experience (2). Memory restabilization involves a process termed reconsolidation, 
which recruits brain regions and certain signaling pathways that are distinct from those 
involved in the initial consolidation (3, 4). Naturalistic behaviors strongly hinge on this 
flexible modulation of long-term memory because the salience of environmental stimuli 
frequently changes (5). Yet, how neural activity patterns support memory across these 
dynamic phases remains unexplored.

Interactions between medial temporal lobe structures, especially the hippocampus, and 
cortical regions are critical for long-term memory (6). Rapid encoding of an episode is 
postulated to occur in the hippocampus, with subsequent functional maturation of cor-
tically based memory that requires hippocampal input (7–9). In keeping with this notion, 
targeted and reversible inactivation of cortical areas can result in impairment of retrieval 
of remote but not recent memory (10–13). Such interactions are best delineated for tasks 
that involve spatial information, but the hippocampus is also implicated in consolidation 
of nonspatial tasks (14, 15).

During nonrapid eye movement (NREM) sleep, behaviorally relevant neural activity 
patterns are reinstated in the hippocampus and cortex. Temporal coordination between 
these structures provides a substrate for interregional communication (16–21). 
Hippocampal and cortical oscillations including hippocampal sharp wave–ripples 
(SPW-R), cortical sleep spindles (SPI), and cortical ripples (CXR) are postulated to 
facilitate such interactions. SPW-R are required for memory (22, 23), and enhancing 
their pairing with cortical spindles converts a subthreshold experience to one sufficient 
for induction of long-term memory (24). CXR are temporally coupled to SPW-R in a 
learning-dependent manner (25), and this temporal association is engaged during 
 successful memory retrieval (26).

These patterns of hippocampal–cortical communication have been independently iden-
tified and characterized during consolidation, but their role outside of this initial memory 
processing epoch is unknown. We hypothesized that these oscillatory coupling patterns 
would be i) jointly modulated in response to memory demand and ii) differentially 
recruited after a consolidated memory was retrieved. To test this hypothesis, we monitored 
hippocampal–cortical network activity as rats performed cycles of spatial and nonspatial 
long-term memory tasks that required repeated consolidation, reconsolidation, and updat-
ing within a consistent behavioral schema. We found that although interactions between 
SPW-R, SPI, and CXR are tightly linked in the absence of memory demand, they are D
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independently recruited depending on the nature of the task and 
the stage of memory processing. Consolidation and reconsolida-
tion were differentiable based on the predominant pattern of hip-
pocampal–cortical coupling and its temporal dynamics across 
NREM sleep. The precise, time-limited tuning of SPW-R, SPI, 
and CXR interactions after different memory-related experiences 
provides a possible substrate for the flexible processing of long-
term memory in a dynamic environment.

Results

We used a conducting polymer-based conformable microelectrode 
surface array (NeuroGrid) in tandem with implanted probes to 
perform concomitant electrophysiological monitoring of the cor-
tex and hippocampus in behaving rats (n = 9 rats). We targeted 
signals derived from the posterior parietal cortex (PPC) due to its 
known interaction with the hippocampus, functional participation 

in distributed networks involved in formation and retrieval of 
episodic memory, and its ability to form an enduring cortical 
engram shortly after learning (27–30).

To identify NeuroGrid electrodes recording from the PPC, we 
combined electrophysiological and anatomical markers (Fig. 1A 
and SI Appendix, Fig. S1). We first explored the occurrence of 
hippocampal and PPC activity patterns during NREM sleep in 
the absence of a structured task. Hippocampal traces exhibited 
characteristic SPW-R, and we detected cortical slow oscillations, 
SPI, and CXR from PPC traces (Fig. 1B). These oscillatory pat-
terns occurred at expected rates, and detection parameters were 
optimized for sensitivity and specificity (SI Appendix, Figs. S1 and S2, 
Materials and Methods). SPW-R and cortical oscillations have sig-
nificant temporal coupling (25, 31–33) (Fig. 1C), and we aimed 
to investigate how these coupling dynamics are coordinated. 
SPW-R and CXR were strongly and precisely coupled compared 
to a more modest coupling between SPW-R and SPI (Fig. 1D). 

A B

C D E

F

Fig. 1. Hippocampal–cortical interactions are jointly modulated in the absence of memory demand. (A) NeuroGrid array conforming over the dorsal cortical 
surface of a rat from bregma (yellow dot) anteriorly to lambda posteriorly. (Scale bar, 1 mm.) (B) Sample wide-band LFP traces (0.1 to 1,250 Hz) simultaneously 
acquired from multiple cortical areas and the hippocampus using NeuroGrid and a silicon probe, respectively. Shaded boxes highlight SPW-R (red), delta waves 
(gray), SPI (yellow), and CXR (blue). (Scale bar, 0.5 s.) (C) Sample recording traces from the hippocampus and PPC electrodes illustrating various hippocampal–
cortical oscillatory interactions: SPW-R–CXR (Top; Scale bar, 60 ms), SPW-R–SPI (Middle; Scale bar,  0.5 s), and tripartite coupling (Bottom; Scale bar, 0.2 s.)  
(D) Sample CCGs between SPW-R–CXR (Top) and SPW-R–SPI (Bottom) during baseline NREM sleep (time 0 = occurrence of SPW-R; red lines indicate midpoint of 
upper and lower boundaries of 95% CIs shown as black-dotted lines; single session in one rat). Exclusive SPW-R–CXR CCG (Top, Right: 1,852 SPW-R and 1,892 
CXR) was calculated by eliminating any CXR co-occurring with SPI in the inclusive CCG (Top, Left: 1,852 SPW-R and 2,805 CXR). Similarly, exclusive SPW-R–SPI CCG 
(Bottom, Right: 1,852 SPW-R and 968 SPI) was calculated by eliminating SPI co-occurring with CXR in the inclusive CCG (Bottom, Left: 1,852 SPW-R and 1,660 SPI). 
(E) Sample CCG between SPW-R, SPI, and CXR demonstrating tripartite coupling (time 0 = occurrence of SPW-R; single session in one rat; 1,852 SPW-R, 2,805 
CXR, and 1,660 SPI). Parameter a represents the peak of the CCG at time 0, whereas b represents the average expected value at time 0. Coupling modulation 
(M) is calculated as (a-b)/b. (F) Group statistics demonstrating changes in coupling modulation (n = 6 rats, paired sample t test; *P < 0.05 between two groups). 
Significant difference between inclusive–exclusive SPW-R–SPI coupling modulation (orange; P = 1.04 × 10−4) but not inclusive–exclusive SPW-R–CXR coupling 
modulation (purple; P = 0.324). Gray lines show mean values for individual rats.D
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We determined the extent to which all three patterns were jointly 
correlated by identifying the CXR that co-occurred with SPI and 
performing cross-correlation with SPW-R (Fig. 1E). This tripartite 
coupling was statistically significant, and its strength was compa-
rable to that of SPW-R–SPI coupling. Furthermore, when we 
eliminated SPI that were additionally coupled to CXR, the cor-
relation between SPW-R–SPI significantly decreased (Fig. 1F). In 
contrast, significant SPW-R–CXR coupling was sustained despite 
elimination of SPI co-occurring with CXR (Fig. 1F). The rela-
tionship between CXR and SPI was also preserved under this 
manipulation (SI Appendix, Fig. S2). Taken together, these results 
suggest that hippocampal–cortical interactions in the absence of 
a consequential behavioral experience are dominated by SPW-R–
CXR coupling but display joint modulation of SPW-R, CXR, 
and SPI.

We next asked how these oscillatory relationships were affected 
by behavioral experience sufficient to induce long-term memory. 
Both SPW-R–SPI and SPW-R–CXR coupling are altered by 
learning (24, 25), but whether these changes are manifestations 
of a unified underlying process and how their temporal dynamics 
modulate across memory phases remain unknown. To address 
these questions, we designed a behavioral protocol based on var-
iations of the cheeseboard maze task [cheeseboard (CB) (33, 34); 
Movie S1]. This task is amenable to within-animal repetition, 

with a robust new memory generated by changing the spatial 
locations associated with rewards. We leveraged this structure to 
examine dynamic memory processes within a consistent task 
schema. New memories for spatial locations were established with 
training trials, consolidated overnight, and then retrieved the 
following day in a set of test trials. Different reward locations 
were trained later the same day, initiating a subsequent memory 
cycle (Fig. 2A). We found that rats effectively sustained these 
memory cycles, with consistently high behavioral performance 
during retrieval the following day for each new memory. To eval-
uate the interaction between previously consolidated reward 
locations and new reward locations, we tracked the rat’s trajectory 
across the maze during training (Fig. 2B). Initial training trials 
with new reward locations were characterized predominantly by 
searching at the previously rewarded locations. After an average 
of five trials, the rat shifted to a random searching strategy for 
new rewards, followed by subsequent trials consistent with grad-
ual encoding of the new reward locations. Over the course of 15 
to 20 trials, rats developed a stereotyped, efficient trajectory to 
navigate to the reward locations. Memory for these reward loca-
tions was successfully retrieved the subsequent day (Fig. 2C). 
These results demonstrate the rats’ ability to flexibly, accurately, 
and repetitively generate new long-term memories based on the 
changing salient stimuli.

A B

C

E FD

Fig. 2. Rats demonstrate the ability to flexibly update long-term memories in a spatial memory task. (A) Schematic of a behavioral protocol for the CB task. 
(B) Sample CB behavioral performance. Top: trajectory of a rat across the maze during five trials of test session(n) (red), during 25 trials of training session(n+1) 
(gray), and during five trials of test session(n+1) (blue). Red and blue circles indicate reward configuration(n) and reward configuration(n+1), respectively. Bottom: 
color map shows spatial distribution of time spent by the rat on the maze surface. Warmer colors represent the locations where the rat spent proportionally 
more time during the session. (C) Performance of rats across training and testing trials for the CB task (n = 6 rats). Red boxes represent the proportion of trials 
when the rats directly searched for the previously rewarded wells (reward configuration(n)). Orange boxes represent the proportion of trials when the rats had a 
predominantly random exploration strategy. Blue boxes represent the proportion of trials where the rat directly navigated to the locations of currently rewarded 
wells (reward configuration(n+1)). (D) Memory performance of rats was significantly decreased for subthreshold (sub) compared to regular CB training (paired 
t test, P = 0.003, n = 13 sessions). (E) Memory performance of rats was identical when the same reward configuration was used for two consecutive memory 
cycles (paired t test, P = 1, n = 7 sessions). (F) During extinction training sessions, rats spent more time exploring the maze compared to CB training sessions 
where rats spent minimum time in nonrewarded locations (K–S test, P << 0.001, n = 6 sessions).D
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We also designed several variations of the CB task to parse its 
component memory processes. First, we explored the relationship 
between extent of training and memory performance. Rats were 
trained on new reward locations only until they could demonstrate 
an accurate, effective navigation trajectory. After this truncated 
training session, rats were tested for recall of the reward locations 
the following day. We found that these sessions resulted in signif-
icantly impaired memory performance compared to completion 
of the full training session (Fig. 2D), indicating that a threshold 
of training must be attained to ensure robust formation of long-
term memory. We next investigated the contrasting behavioral 
scenario by training rats on the same reward locations for two 
consecutive memory cycles. In this case of repeat learning, per-
formance reached a plateau during the first memory cycle that was 
sustained throughout the subsequent training and testing sessions 
of the second memory cycle. Memory performance was not dif-
ferent between the first and second testing session, consistent 
with the notions that a single training session is sufficient to estab-
lish a robustly recalled long-term memory and that additional 
training does not further enhance behavior (Fig. 2E). Last, we 
conducted training sessions with the goal of extinguishing the 
previously recalled memory without encoding new reward loca-
tions. To accomplish this, we randomized reward locations on 
each training trial. Rats initially searched the previously recalled 
reward locations, but in the absence of rewards at these locations, 

they then embarked on a random foraging strategy that resulted 
in a lack of stereotyped trajectory across the maze by the end of 
this session (SI Appendix, Fig. S3). In this manner, we were able 
to diminish the salience of the previous reward locations without 
introducing a novel learning demand (Fig. 2F).

These tasks allowed us to investigate how hippocampal–cortical 
communication is modulated across memory phases. 
Neurophysiological recordings were performed after each behavior 
session, and we analyzed the trajectory of oscillatory coupling dur-
ing NREM sleep. To track changes within individual animals with 
sensitivity to each training–testing cycle, our analysis was based 
on comparisons between a sleep session and its chronologically 
subsequent sleep session, generating unique paired data points. 
Sleep quality was similar between sleep sessions that occurred after 
the different behavioral sessions (SI Appendix, Fig. S4), and we did 
not identify circadian patterns that could drive behavior-independ-
ent changes in oscillatory coupling (SI Appendix, Fig. S5). We first 
examined changes in SPW-R–CXR coupling as rats progressed 
through the memory cycle. We observed that this coupling was 
the strongest after a long-term memory was retrieved compared 
to when the memory was first established (Fig. 3 A and B). In 
contrast, SPW-R–CXR coupling was decreased by the transition 
from a previously learned reward configuration to a new reward 
configuration (Fig. 3 C and D). When we quantified this interac-
tion at an intermediate time point during training, we found that 

Fig. 3. Coupling of SPW-R with CXR is specifically up-regulated after retrieval of newly established long-term spatial memory. (A) PPC spectrogram trigger-
averaged on occurrence time of SPW-R from sample rat (Top) reveals temporally locked increase in power in the ripple band that is more prominent in retrieval 
sleep(n) (Right) compared to that in learning sleep(n) (Left) on the CB task. Corresponding CCGs demonstrating change in SPW-R–CXR coupling (Bottom) during 
learning sleep(n) (Left: 1,555 SPW-R and 2,569 CXR) compared to that in retrieval sleep(n) (Right: 1,999 SPW-R and 4,263 CXR). Time 0 is the occurrence of SPW-R. 
(Scale bar, 25 ms.) (B) SPW-R–CXR coupling modulation in learning sleep(n) vs. retrieval sleep(n) (bars; mean ± SEM) on the CB task. Gray lines indicate the mean 
change in individual rats (n = 6 rats, paired t test, P = 0.0174* = P < 0.05). (C) PPC spectrogram trigger-averaged on occurrence time of SPW-R from sample rat 
(Top) reveals temporally locked increase in power in the ripple band that is more prominent in prelearning sleep(n+1) (Left) compared to that in learning sleep(n+1) 
(Right). Corresponding CCGs demonstrating change in SPW-R–CXR coupling (Bottom) during paired prelearning sleep(n+1) (Left: 1,936 SPW-R and 4,737 CXR) and 
learning sleep(n+1) stages (Right: 1,139 SPW-R and 1,662 CXR). (Scale bar, 25 ms.) (D) SPW-R–CXR coupling modulation in prelearning sleep(n+1) vs. learning sleep(n+1) 
on the CB task (n = 6 rats; paired t test, P = 0.028* = P < 0.05). (E) SPW-R–CXR coupling modulation on the subthreshold CB task variation for learning sleep(n) 
vs. retrieval sleep(n) (Left: n = 7 sessions, paired t test, P = 0.052) and prelearning sleep(n+1) vs. learning sleep(n+1) (Right: n = 7 sessions, paired t test, P = 0.16). 
(F) SPW-R–CXR coupling modulation on the repeat CB task variation for learning sleep(n) vs. retrieval sleep(n) (Left: n = 7 sessions, paired t test, P = 0.52) and 
prelearning sleep(n+1) vs. learning sleep(n+1) (Right: n = 7 sessions, paired t test, P = 0.23). (G) SPW-R–CXR coupling modulation on the extinction CB task variation 
for prelearning sleep(n+1) sleep vs. learning sleep(n+1) (n = 7 sessions, paired t test, P = 0.50).D
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SPW-R–CXR coupling progressively increased after additional 
learning trials and peaked after successful memory retrieval (SI 
Appendix, Fig. S6). The rats that underwent the subthreshold train-
ing (as in Fig. 2D) did not display significant changes in the 
SPW-R–CXR interaction, although trends were present that 
tracked the direction of change that occurred with a full training 
session (Fig. 3E). This pattern of modulation was specific for newly 
established long-term memory because repeat training of the pre-
viously learned and recalled reward locations (as in Fig. 2E) did 
not induce significant coupling modulation (Fig. 3F). An extinc-
tion training session (as in Fig. 2F and SI Appendix, Fig. S3) was 
also insufficient to change SPW-R–CXR coupling (Fig. 3G). In 
addition, the enhanced SPW-R–CXR coupling observed after 
memory retrieval occurred in the absence of a parallel increase in 
oscillation occurrence rates, indicating a specific alteration in tem-
poral precision (SI Appendix, Fig. S7). Taken together, these results 
demonstrate that long-term memory processes drive phase-specific 
modulations in SPW-R–CXR coupling.

We next examined SPW-R–SPI coupling across the memory 
cycle. In contrast to SPW-R–CXR coupling, we found that this 
coupling was significantly increased after learning but dropped 
after retrieval (Fig. 4 A–D). These changes were enhanced when 
instances of tripartite coupling were eliminated in contrast to 
what was observed in the absence of memory demand (Fig. 4 B 
and D). Behavioral experiences that i) were subthreshold for 
long-term memory expression, ii) repeated previously trained 
information, or iii) served to extinguish previous memory in the 
absence of new information were all insufficient to generate 
significant changes in SPW-R–SPI coupling (Fig. 4 E–G). 

Although occurrence rates of SPW-R and SPI paralleled their 
coupling modulation across the memory cycle, the precise oscil-
latory pairing exceeded that predicted by rate (SI Appendix, Fig. 
S7). Thus, SPW-R–SPI coupling is strongly induced by long-
term memory with a different time course across memory phases 
compared to SPW-R–CXR coupling. Of note, the direct inter-
action between CXR and SPI did not change with any memory 
phase (SI Appendix, Fig. S8).

To investigate how these oscillatory coupling patterns could be 
influenced by the type of task, we conducted similar analyses for 
a nonspatial object association task [object association (OA) (35)]. 
Rats learned to associate a particular object with a reward over the 
course of training trials and successfully retrieved memory for this 
object the following day (Fig. 5 A and B and Movie S1). Similar 
to our findings with the CB task, SPW-R–CXR coupling was 
significantly increased during sleep following retrieval compared 
to learning (Fig. 5C). This change was also specific for new infor-
mation because it was abolished by repeating the same object–
reward association on consecutive memory cycles (Fig. 5D and SI 
Appendix, Fig. S9). However, significant alteration of SPW-R–SPI 
coupling was not observed for any stage of this memory task 
(Fig. 5 E and F). These results suggest a conserved role for 
SPW-R–CXR in long-term memory but a task-specific function 
of SPW-R–SPI coupling.

Given these findings, we further characterized the dynamics of 
SPW-R–CXR coupling across individual sleep sessions after 
behavior on the CB and OA tasks. We found that in the sleep 
session after learning for both the spatial and nonspatial tasks, 
coupling rates were initially high but exhibited a steady decline 

Fig. 4. Coupling of SPW-R with SPI is specifically up-regulated after learning of newly established long-term memory. (A) Sample SPW-R–SPI CCGs demonstrating 
a decrease in modulation during retrieval sleep(n) (Left: 1,668 SPW-R and 1,312 SPI) vs. learning sleep(n) (Right: 2,025 SPW-R and 1,353 SPI) on the CB task.  
(B) Significant change in coupling modulation between learning sleep(n) and retrieval sleep(n) for exclusive and inclusive SPW-R–SPI coupling on the CB task (Left: 
exclusive, P = 0.0127; Right: inclusive, P = 0.032; paired t test, *P < 0.05; n = 6 rats). (C) Sample SPW-R–SPI CCGs demonstrating an increase in modulation during 
learning sleep(n+1) (Left: 1,473 SPW-R and 1,009 SPI) vs. prelearning sleep(n+1) (Right: 1,318 SPW-R and 1,020 SPI) on the CB task. (D) Significant change in coupling 
modulation between prelearning sleep(n+1) and learning sleep(n+1) for exclusive (Left: paired t test, P = 0.012) and inclusive (Right: paired t test, P = 0.010) SPW-R–SPI 
coupling on the CB task. *P < 0.05; n = 6 rats. (E) SPW-R–SPI coupling modulation on the subthreshold CB task variation for learning sleep(n) vs. retrieval sleep(n) 
(Left: n = 7 sessions, paired t test, P = 0.33) and prelearning sleep(n+1) vs. learning sleep(n+1) (Right: n = 7 sessions, paired t test, P = 0.82). (F) SPW-R–SPI coupling 
modulation on the repeat CB task variation for learning sleep(n) vs. retrieval sleep(n) (Left: n = 7 sessions, paired t test, P = 0.69) and prelearning sleep(n+1) vs. 
learning sleep(n+1) (Right: n = 7 sessions, paired t test, P = 0.92). (G) SPW-R–SPI coupling modulation on the extinction CB task variation for prelearning sleep(n+1) 
sleep vs. learning sleep(n+1) (n = 7 sessions, paired t test, P = 0.32).D
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over subsequent NREM sleep (Fig. 6 A and B, light colors). In 
contrast, the sleep after retrieval of a spatial or nonspatial long-
term memory was associated with a similar initial peak but then 
a sustained plateau in coupling (Fig. 6 A and B, dark colors). These 
data indicate that the temporal recruitment of SPW-R–CXR cou-
pling is time limited and specific to whether memory was previ-
ously encoded or retrieved. We then aimed to synthesize these 
results into neural signatures characteristic of different stages 
within the memory cycle. We classified changes that occurred after 
learning and prior to retrieval as related to consolidation and 
changes that occurred after retrieval but prior to any new learning 
as reconsolidation. For CB and OA tasks, the principal indicator 
of reconsolidation was a surge in SPW-R–CXR coupling. This 
increase was accompanied by a decrease in SPW-R–SPI coupling 
that was only significant for the CB task. In contrast, consolidation 
was characterized by enhancement of SPW-R–SPI coupling for 
the CB task only. Unsupervised k-means clustering based on 
SPW-R–CXR and SPW-R–SPI coupling modulations resulted in 
an accurate classification of memory processes across animals 
(Fig. 6C). When examined chronologically, these patterns resulted 
in a cyclic, task-specific modulation of oscillatory coupling that 
was appreciable at the level of an individual rat (Fig. 6 C and D). 
Therefore, hippocampal–cortical communication occurs in inde-
pendent streams that are differentially modulated by both the 
memory phase and the spatial demand of the task. These results 

support the notion that oscillatory coupling facilitates memo-
ry-specific information flow and shed light onto the mechanisms 
that govern long-term memory in a dynamic environment.

Discussion

Here, we investigated oscillatory dynamics between the hippocam-
pus and cortex as long-term memories were consolidated, strength-
ened, and updated during sleep after a behavioral experience. We 
found that in the absence of memory demand, SPW-R, CXR, and 
SPI were jointly modulated in these regions. Offline consolidation 
of spatial, but not nonspatial, memory was correlated with inde-
pendent recruitment of SPW-R–SPI coupling. Subsequent 
retrieval and reconsolidation initiated a shift toward enhanced 
SPW-R–CXR interactions for both memory types. This shift only 
occurred for recently established long-term memories; in the 
absence of new learning within 24 h, no changes were evoked. 
The stage of memory processing could be identified by the relative 
prominence of oscillatory coupling patterns and their postbehavior 
dynamics. These findings suggest the ability of such interactions 
to specifically, flexibly, and repetitively support memory processes 
required for adaptation to a changing environment.

Memory consolidation requires protein synthesis (36, 37), and 
reactivation of a previously consolidated memory is postulated to 
restore its lability, as demonstrated by an additional window of 

A

C D

E F

B

Fig. 5. Coupling of SPW-R with CXR is specifically up-regulated after retrieval of established long-term nonspatial memory. (A) Schematic of a behavioral 
protocol for a nonspatial object association (OA) task. (B) Performance of rats across training and testing trials for the OA task (n = 6 rats). Red boxes indicate 
proportions of trials where rats explored >2 incorrect reward objects before finding the correct object. Orange boxes indicate trials where rats explored at 
most two incorrect objects. Blue boxes represent the proportion of trials where rat directly located the correct object. (C) SPW-R–CXR coupling modulation in 
learning sleep(n) vs. retrieval sleep(n) (Left: paired t test, P = 0.019) and prelearning sleep(n+1) vs. learning sleep(n+1) (Right: paired t test, P = 0.0067) on the OA task. 
Gray lines indicate the mean change in individual rats (bars; mean ± SEM; n = 6 rats, *= P < 0.05). (D) SPW-R–CXR coupling modulation in the repeat variation 
of the OA task for learning sleep(n) vs. retrieval sleep(n) (Left: paired t test, P = 0.47) and prelearning sleep(n+1) vs. learning sleep(n+1) (Right: paired t test, P = 0.28).  
(E) SPW-R–SPI coupling modulation in learning sleep(n) vs. retrieval sleep(n) (Left: paired t test, P = 0.87) and prelearning sleep(n+1) vs. learning sleep(n+1) (Right: paired 
t test, P = 0.30) on the OA task. (F) SPW-R–SPI coupling modulation in the repeat variation of the OA task for learning sleep(n) vs. retrieval sleep(n) (Left: paired t 
test, P = 0.47) and prelearning sleep(n+1) vs. learning sleep(n+1) (Right: paired t test, P = 0.29).

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 C
O

L
U

M
B

IA
 U

N
IV

 L
IB

 S
A

S-
E

L
E

C
T

R
O

N
IC

 M
A

T
E

R
IA

L
S 

on
 M

ar
ch

 2
1,

 2
02

3 
fr

om
 I

P 
ad

dr
es

s 
12

8.
59

.1
49

.2
18

.



PNAS  2023  Vol. 120  No. 7  e2207909120 https://doi.org/10.1073/pnas.2207909120   7 of 10

susceptibility to protein synthesis blockade in certain conditions 
(38–40). These processes are partially differentiable on the basis of 
identified molecular mechanisms and involved anatomical circuits 
(4, 41, 42). Our data, which demonstrate a contrast between hip-
pocampal–cortical oscillatory interactions after learning and 
retrieval, support the notion that these experiences can be func-
tionally and mechanistically distinguished. Furthermore, we 
observed that a retrieval experience characterized by reinforcement 
of previous associations resulted in a different pattern of oscillatory 
coupling than a retrieval experience that weakened previous asso-
ciations and established new ones within the same schema. Such 
patterns may therefore provide insight into whether a behavioral 
experience has served to strengthen or extinguish a memory. 
Repetitive training and retrieval of the same associations over 2 d 
eliminated oscillatory coupling differences during the subsequent 
offline epochs, suggesting either a time-limited role in both con-
solidation and reconsolidation or a requirement for proximal new 
learning. Further behavioral experiments that extend the examina-
tion of an individual memory could facilitate disambiguation of 
these possibilities.

Significant modification of hippocampal–cortical coupling 
occurred with spatial and nonspatial tasks, in keeping with evidence 
supporting the role for the hippocampus and distributed cortical 
regions in offline processing for both these types of memory  
(14, 43, 44). However, SPW-R–SPI coupling was more strongly 
modulated across consolidation and reconsolidation of the spatial, 
compared to the nonspatial, task. We propose that this form of 
coupling is most prominent with the PPC for tasks that heavily rely 
on spatial context information (30, 45), whereas SPW-R–CXR cou-
pling is more generally activated within complex, distributed circuits 
involved in strengthening of long-term representations (46, 47). It 
is possible that this SPW-R–SPI coupling is locally up-regulated in 
cortical regions outside of the PPC during the nonspatial task.

In keeping with previous studies, we found that occurrence 
rates of SPW-R and SPI were modestly modulated by previous 
salient behavioral experiences (48–52). However, we found evi-
dence to support independent regulation of oscillation occurrence 
rate and temporal coupling. Changes in coupling strength utilized 
were selected to normalize for rate measures (53, 54), and during 
specific memory stages, coupling strength was increased when 
oscillation occurrence rate decreased. Because SPW-R, CXR, and 
SPI have all individually been associated with reactivation of 
behaviorally relevant neural spiking patterns and cellular plasticity 
(17, 55–57), these parameters could be differentially engaged to 
modify local or distributed processes depending on the memory 
phase and task demand.

Rodents established long-term memory for our tasks in a 
 single day of training and efficiently updated these memories 
within a previously learned schema when reward associations 
were changed. This task structure allowed us to focus on the 
dynamics of the memory process in contrast to tasks where pro-
longed training requirements, strong aversive responses, or habit-
uation can hinder repeated cycles of memory formation within 
an individual animal (33, 34, 58). Oscillation occurrence rates 
and strength of oscillatory coupling demonstrated memo-
ry-driven fluctuation around a set point, suggestive of homeo-
static limits on modulation of these parameters over the course 
of days. On a shorter timescale, coupling was the highest in the 
sleep epochs immediately following a behavior, consistent with 
the effectiveness of closed-loop manipulations performed for 
only the first hour of the consolidation period in modifying 
memory and evidence for rapid establishment of cortical engrams 
(22, 24, 30, 59). During reconsolidation, SPW-R–CXR coupling 
was also increased in later sleep epochs, raising a potential parallel 
with the delayed window of memory-modulating effects for cor-
tically administered pharmacologic substances (60–62).

Δ

Δ

A B

C D

Fig. 6. Memory consolidation and reconsolidation are differentiable on the basis of hippocampal–cortical coupling patterns. (A) Joint occurrence rate of SPW-R 
and CXR across NREM sessions reveals different temporal trajectories for learning sleep(n) vs. retrieval sleep(n) on the CB task (Left: n = 23 sessions) and the OA task 
(Right: n = 12 sessions). Lines and shaded bars represent mean ± SEM (B) Increase in joint occurrence rate of SPW-R and CXR from learning sleep(n) vs. retrieval sleep(n) 
on the CB task (Left: n = 20 sessions; paired t test, P = 0.012) and OA task (Right: n = 10 sessions; paired t test, P = 0.037). Data represented as mean ± SEM; gray 
lines are individual sessions; *P < 0.05. (C) Unsupervised k-means clustering of the percentage changes in the coupling modulation of SPW-R–CXR and SPW-R–SPI 
between sleep sessions after memory phases on the CB task shows accurate classification (n = 6 rats, accuracy = 86.36%). (D) Cyclical modulation of SPW-R–CXR 
coupling (Top) and SPW-R–SPI coupling (Bottom) across the memory cycle for the CB task (sample rat).
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The fate of a long-term memory is determined by subsequent 
experience and is dynamic over a prolonged period. Our results 
show that three prominent network patterns implicated in memory 
(SPW-R, SPI, and CXR) undergo dynamic comodulation across 
the cycle of memory consolidation, reconsolidation, and updating. 
We hypothesize that temporal links between these plasticity-related 
oscillations in different brain structures provide the network infra-
structure for cellular and molecular changes associated with long-
term memory processing. These oscillatory coupling patterns 
present an opportunity for design of novel closed-loop investiga-
tions to manipulate memory across distributed neural networks 
and enhance understanding of disorders characterized by impaired 
and overactive information retention (63, 64).

Materials and Methods

Probe Fabrication and Preparation. The fabrication of conducting poly-
mer-based Neuro Grids has been discussed in previous publications (25, 65). 
In brief, a projection exposure system was used to pattern parylene C, Au, Pt, Ti, 
and poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) films. 
The NeuroGrid was attached to a custom-printed circuit board using mixed-con-
ducting particulate composites (66). The board contained an RHD2164 die (Intan 
Technologies) for the purpose of amplification, digitization, and transmission of 
the acquired neural signals via a serial peripheral interface protocol to a computer 
interface board (RHD2000 evaluation board; Intan Technologies). All back-end 
electronics were covered with silicone elastomer as an encapsulation layer.

Animal Surgical Procedure. All animal experiments were approved by the 
Institutional Animal Care and Use Committee at the Columbia University. Nine 
male Long Evans rats (200 to 350 g) were used for intracranial implantation. Rats 
were kept on a regular 12-h–12-h light–dark cycle and housed in pairs prior to 
implantation but separated afterward. Prior experimentation was not performed on 
these animals. The animals were initially anesthetized with 2% isoflurane and main-
tained under anesthesia with 0.75 to 1% isoflurane during surgery. Silicon probes 
and/or wires were implanted into the hippocampus (−3.5 anterior-posterior (AP) 
and 3.0 medial-lateral (ML)). A NeuroGrid electrocorticography array was placed 
over the dorsal cortical surface of the contralateral hemisphere relative to the wires. 
Screws in the skull, overlying the cerebellum, served as ground electrodes. The 
craniotomies were covered by Gelfoam and sealed using a 10:1 mixture of paraffin 
and mineral oil. Rats recovered for 4 to 5 d prior to initiation of experimentation. 
Hippocampal electrodes were adjusted in the dorsal–ventral axis to target the CA1 
pyramidal cell layer based on characteristic appearance of hippocampal SPW-Rs.

Neurophysiology Data Acquisition and Processing. All rats underwent 
a protocol consisting of neurophysiological recordings and behavioral tasks. 
Recordings were started at a fixed time, timed after each behavioral interven-
tion. Neurophysiological signals were amplified, digitized continuously at 20 kHz 
using a headstage directly attached to the probe (RHD2000; Intan Technologies), 
and stored for offline analysis with 16-bit format. Data were analyzed using 
MATLAB (MathWorks) and visualized using Neuroscope.

Behavioral Training. Rats were placed on a water deprivation schedule for 3 to 
5 d prior to intracranial implantation to ensure they could receive water through 
a handheld syringe. Rats were weighed daily during water deprivation to ensure 
that body weight did not decrease to <85% of predeprivation measurements. 
Three additional rats underwent only behavioral training.

Behavior for all tasks was tested on a cheeseboard maze consisting of a 
1.5-m-diameter open circular arena that was painted a uniform green and stood 
70 cm above the floor. A total of 177 water wells (7 mm in diameter and 3 mm in 
depth) were drilled 8 cm apart in the maze surface, forming evenly distributed, 
parallel columns and rows. One wall of the starting box (23 cm wide × 30 cm 
long × 48 cm high) functioned as a gate that could be raised and lowered to 
control the rat’s access to the maze.

Prior to surgery, water-deprived rats were first familiarized with exploring 
the maze environment to obtain water. Initially, the rat was placed in the center 
of the maze and allowed to explore and retrieve multiple (~25) randomly 
placed hidden water rewards. Over the next 3 d, the number of available 
water rewards on the maze was gradually reduced, and a trial structure was 

introduced such that the rat received a food reward (0.5 to 1 Froot Loop) after 
successful retrieval of all water rewards. The rat was then trained to return to 
the starting box after retrieving water to obtain its food reward. After 2 to 4 d  
of this repeated procedure, the rat would consistently explore the maze to 
obtain three spatially distinct water rewards and then independently return 
to the starting box. To prevent use of odor-mediated searching, the maze was 
wiped with a towel soaked in 70% ethanol and rotated by a random multiple of 
90° relative to the starting box between all trials. Plastic toys of varying shapes 
and colors were then introduced onto the maze surface. Rats were exposed to 
the objects initially to ensure that there were no intrinsic preferences for any 
given object. Rats learned to displace the objects and obtain water from the 
well directly under the object. This phase of general training ended when the 
rat could complete 35 to 50 trials per day. Behavior sessions were monitored 
by an overhead video camera (20 fps), and tracking of the rat’s location was 
facilitated by blue and red light emitting diodes (LEDs) attached to its cap. Rats 
had neurophysiological recording in their home cage after each behavioral 
session. Several rats performed both CB and OA tasks, with each rat typically 
completing 2 to 4 memory cycles per task.

Cheeseboard Maze Task. Each memory cycle on this task was completed 
over 2 d. On the first of the 2 d, the rats learned the location of three hidden 
water rewards placed in a randomly selected set of 3 water wells over the 
course of ~35 trials (25 trial sessions, then ~1-h home cage rest, and then 
10 trial sessions). All rats obtained >80% performance averaged over five 
trials by the end of the training session. On the second of the 2 d, the rat 
was given a five-trial test with water rewards located in the same location 
as the first day to assess memory for the spatial configuration of the reward 
locations. After 4 h in the home cage, the rat was brought back to the maze 
to learn three different water reward locations. Behavior was scored by track-
ing the animal’s trajectory across the maze. During training sessions, the 
trajectory was compared to that of the test session performed earlier in the 
day (wherein the rat tracks to the previous day’s rewards) and an idealized 
minimal distance trajectory between the new reward locations. Memory 
performance in the test session was scored by determining the number of 
rewards obtained in <30 s per trial, weighted by trial number (with higher 
weight to the initial trials).

Object Association Task. On the first day for this task, rats learned to asso-
ciate one of five objects placed at random locations on the cheeseboard maze 
surface over the course of ~50 trials. The number of trials and temporal 
arrangement were slightly modified compared to those of the CB task due to 
different amounts of water obtained by the rat per trial (affecting motivational 
status) and number of trials required to meet the learning criterion (> 80% 
performance averaged over five trials). On the second day, the rat was given a 
5-trial test with water rewards associated with the same object as the first day 
to assess this memory. After 4 h in the home cage, the rat was brought back 
to the maze to complete another training session, which consisted of either 
a new object–reward association or retraining with the same object–reward 
association from the previous day. Behavior was scored by tracking the animal’s 
interactions with the objects. Direct navigation to the correct object was scored 
the highest, with progressively lower scores for each incorrect object explored 
prior to the correct object.

Task Variations. A series of variations on the behavioral protocols were 
conducted.

Subthreshold. A subthreshold memory cycle took place over 3 d. The first day 
consisted of a normal CB task training followed by a test session on the morning of 
the second day. Approximately 4 h after this test session, a single “subthreshold” 
training session was performed. In subthreshold training, the animal was taught 
a new spatial reward configuration but with fewer training trials. Once the animal 
was able to successfully navigate to all reward locations on three consecutive trials 
in <30 s, the session was terminated, and the animal was placed in the home 
cage to sleep. On the third day, the animal was tested on the reward configuration 
used in the subthreshold training.

Repeat. In this case, the animal was trained on reward configurations that had 
been used in the previous training/testing sessions. Performance was assayed 
by a subsequent test session the following day.D
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Extinction. An extinction cycle took place over 2 d. The first day consisted of a nor-
mal CB task training followed by a test session on the morning of the second day. 
Approximately 4 h after this test session, a single “extinction” training session was 
performed. In extinction training, the general task structure was unchanged, but 
reward locations were randomized for each individual trial of the session. The trials 
were continued until the animal consistently no longer navigated in a directed 
manner to the reward locations from the previous training/testing sessions and 
instead foraged the maze randomly. Use of the reward locations from previous 
training/testing sessions was avoided during reward location randomization to 
prevent reinforcement of the prior trajectory.

Preprocessing. The electrophysiological data were resampled to 1,250 Hz to 
facilitate  local field potential (LFP) analysis. We identified epochs of sleep by 
first detecting immobility in the motion signal of the accelerometer attached 
to the headstage and absence of electromyogram (EMG) artifacts. NREM sleep 
epochs were then detected by locating periods of elevated delta (0.5 to 4 Hz) 
amplitude in the neocortex at times of immobility. rapid eye movement sleep 
(REM)M epochs were distinguished by an increased theta–delta-band frequency 
ratio in the intracranial electroencephalography (iEEG) spectrograms in the 
hippocampus. Sleep-scored epochs were then visually inspected and manually 
adjusted using whitened spectrograms and raw traces to eliminate short epochs 
containing movement artifacts.

Region Selection. The anatomical location of each NeuroGrid electrode was 
estimated by first determining the stereotactic position of the anteromedial 
electrode, which sits closest to bregma. Then by following the interchannel dis-
tance, we interpolated the anatomical position of each electrode based on the rat 
stereotactic atlas. We corroborated these anatomical regions with physiological 
markers. Electrodes demonstrating a high rate of CXRs overlapped with channels 
marked as the PPC based on anatomical mapping. Only the detected events 
in the channels identified in the PPC region were considered for analysis. We 
visually inspected the recordings in Neuroscope to eliminate noisy electrodes.

LFP Event Detection. SPW-R, SPI, and CXR were detected based on the Freely 
Moving Animal (http://fmatoolbox.sourceforge.net) toolbox sequential detection 
algorithm. Detection of SPW-R was initiated by visually determining a channel 
where SPW-R were present and then band-pass filtering this hippocampal chan-
nel between 100 and 250 Hz. The filtered signal was then rectified and instanta-
neous power was extracted using the Hilbert transform. Events where the filtered 
envelope was two SDs above the baseline SD of the filtered traces and where 
peaks reached five times the SD were selected. Only events longer than 20 ms 
duration were selected, and the duration between two SPW-R events had to be a 
minimum of 30 ms. Events common to the ripple channel and an EMG electrode 
noise channel were eliminated.

To detect SPI in the PPC, a PPC channel was filtered between 10 and 20 Hz, 
followed by signal rectification and enveloping. Events where the filtered enve-
lope was greater than 3 SD above the baseline for a minimum of 300 ms and a 
maximum of 4 s were detected. The duration between two SPI events had to be 
a minimum of 450 ms.

CXR were detected by filtering a PPC channel between 110 and 180 Hz, recti-
fying and extracting instantaneous power using the Hilbert transform. CXR were 
identified when the envelope was greater than 5 SD above the baseline for a 
minimum of 20 ms and a maximum of 90 ms. The duration between two CXR 
events was set to a minimum of 30 ms. All detections were visually inspected for 
accuracy for each recording session.

Rate Calculation. The rate of SPW-R was calculated by dividing the number of 
detected SPW-R in the hippocampal channel by the duration of NREM sleep. For 
CXR and SPI, the detected events were pooled together from all the PPC channels, 
and any repeating event time points were eliminated. This allowed us to identify 
all the unique events occurring in the PPC region. Dividing the number of unique 
events by the NREM duration provided us with the rate of CXR and SPI.

Cross-correlograms (CCG) Calculation. To determine coupling between 
detected oscillations, CCGs were calculated, and the statistical significance was 
determined using a modified convolution method (53). The CCG was calculated 
from the counts of the underinvestigation event E2 at specific time delays with 
respect to the occurrence of the reference event E1 which quantifies the temporal 
correlation between two detected events.

By convolving the cross-correlation histogram with a partially hollowed 
 window, we estimated the co-occurrence of the two events when the occurrence 
of the two events is independent (54). The CI was estimated from a Poisson 
distribution with the mean lambda value determined from the convolution.

The peak of the CCG (a) above the CI and expected value level (b) at time zero 
allow us to compute the coupling modulation (M) as a normalized ratio of the 
peak exceeding the CI at chance.

M =

a − b

b
.

Consider the scenario where the entire length of neural recording was divided 
into time bins without overlap. For each time bin, suppose that E2 occurs with a 
probability p1 if event E1 is present but with probability p2 if event E1 is absent. 
The degree of difference of the two probabilities can be quantified through the 
log odds ratio (R) (54) as follows:

R = log

(

p1
1 − p1

∕

p2
1 − p2

)

,

where the statistical parameter R quantifies the tendency of the two events to 
co-occur. In our case, both p1 and p2 are much lower than 1 based on the small 
time bins comprising the CCG compared to the length of the entire recording. 
The ratio can then be simplified as follows:

R = log

(

p1
p2

)

.
 

From the CCG, probabilities p1 and p2 are directly proportional to the signifi-
cant number of co-occurring events per second a and the number of co-occurring 
events at chance b, respectively.

p
1

p
2

∝

a

b
.

The coupling strength we defined can be seen as equivalent to the exponential 
of co-occurrence index R with a shift (a/b-1). The coupling strength thus quantifies 
the co-occurrence of two events and is independent of the occurrence rate of both 
event 1 and event 2.

To determine validity across different statistical approaches, we compared CCG 
quantification with another methodology demonstrated to reliably assess correla-
tion (affinity metric) as described in ref. 54. Both CCG quantification and the affinity 
metric account for oscillation occurrence rates and gave concordant results. Joint 
occurrence rates of oscillations do not only account for oscillation occurrence rates 
but also demonstrate similar directional modulation in a subset of data tested (SI 
Appendix, Fig. S10). CCG quantification was selected as an appropriate statistical 
representation of oscillatory coupling and used for all analyses.

CCG Dynamics across Sleep Epochs. To examine the dynamics of SPW-R–CXR 
coupling over sleep, we looked at events occurring within every 10 min, non-
overlapping NREM window across the entire recording session with the NREM 
duration longer than 80 min. We calculated the co-occurrence by counting the 
number of SPW-R and CXR events that coincided temporally within 100 ms of 
their peak times. We divided the count by the nominal occurrence rate of SPW-R.

Statistics. We conducted statistical analyses across the different memory sleep 
stages following training or test sessions for both CB and OA tasks. To test the null 
hypothesis that there is no significant difference in the coupling strength between 
memory stages, we used paired t test. Kolmogorov–Smirnov (K–S) testing was used 
to compare distributions. Significance was taken as P < 0.05. The unsupervised 
k-means algorithm was used to cluster patterns of oscillatory coupling modulation.

Data, Materials, and Software Availability. All study data are included in the 
article and/or SI Appendix.
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